نتائج البحث

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
تم إضافة الكتاب إلى الرف الخاص بك!
عرض الكتب الموجودة على الرف الخاص بك .
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إضافة العنوان إلى الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
هل أنت متأكد أنك تريد إزالة الكتاب من الرف؟
{{itemTitle}}
{{itemTitle}}
وجه الفتاة! هناك خطأ ما.
وجه الفتاة! هناك خطأ ما.
أثناء محاولة إزالة العنوان من الرف ، حدث خطأ ما :( يرجى إعادة المحاولة لاحقًا!
    منجز
    مرشحات
    إعادة تعيين
  • الضبط
      الضبط
      امسح الكل
      الضبط
  • مُحَكَّمة
      مُحَكَّمة
      امسح الكل
      مُحَكَّمة
  • السلسلة
      السلسلة
      امسح الكل
      السلسلة
  • مستوى القراءة
      مستوى القراءة
      امسح الكل
      مستوى القراءة
  • السنة
      السنة
      امسح الكل
      من:
      -
      إلى:
  • المزيد من المرشحات
      المزيد من المرشحات
      امسح الكل
      المزيد من المرشحات
      نوع المحتوى
    • نوع العنصر
    • لديه النص الكامل
    • الموضوع
    • بلد النشر
    • الناشر
    • المصدر
    • الجمهور المستهدف
    • المُهدي
    • اللغة
    • مكان النشر
    • المؤلفين
    • الموقع
572,231 نتائج ل "Earth Sciences"
صنف حسب:
Earth
\"Discover the secrets of life on our planet and learn how animals, plants, and the environment interact\"--Cover.
Subduction Dynamics
Subduction dynamics has been actively studied through seismology, mineral physics, and laboratory and numerical experiments.Understanding the dynamics of the subducting slab is critical to a better understanding of the primary societally relevant natural hazards emerging from our planetary interior, the megathrust earthquakes and consequent tsunamis. Subduction Dynamics is the result of a meeting that was held between August 19 and 22, 2012 on Jeju island, South Korea, where about fifty researchers from East Asia, North America and Europe met. Chapters treat diverse topics ranging from the response of the ionosphere to earthquake and tsunamis, to the origin of mid-continental volcanism thousands kilometers distant from the subduction zone, from the mysterious deep earthquakes triggered in the interior of the descending slabs, to the detailed pattern of accretionary wedges in convergent zones, from the induced mantle flow in the deep mantle, to the nature of the paradigms of earthquake occurrence, showing that all of them ultimately are due to the subduction process. Volume highlights include: * Multidisciplinary researchinvolving geology, mineral physics, geophysics and geodynamics * Extremely large-scale numerical models with sliate-of-the art high performance computing facilities * Overview of exceptional three-dimensional dynamic representation of the evolution of the Earth interiors and of the earthquake and subsequent tsunami dynamics * Global risk assessment strategies in predicting natural disasters This volume is a valuable contribution in earth and environmental sciences that will assist with understanding the mechanisms behind plate tectonics and predicting and mitigating future natural hazards like earthquakes, volcanoes and tsunamis.
Earth science
\"Uses geography and geology to outline the way our planet works.\"--Provided by publisher.
A Case for Climate Engineering
Climate engineering -- which could slow the pace of global warming by injecting reflective particles into the upper atmosphere -- has emerged in recent years as an extremely controversial technology. And for good reason: it carries unknown risks and it may undermine commitments to conserving energy. Some critics also view it as an immoral human breach of the natural world. The latter objection, David Keith argues in A Scientist's Case for Climate Engineering , is groundless; we have been using technology to alter our environment for years. But he agrees that there are large issues at stake. A leading scientist long concerned about climate change, Keith offers no naïve proposal for an easy fix to what is perhaps the most challenging question of our time; climate engineering is no silver bullet. But he argues that after decades during which very little progress has been made in reducing carbon emissions we must put this technology on the table and consider it responsibly. That doesn't mean we will deploy it, and it doesn't mean that we can abandon efforts to reduce greenhouse gas emissions. But we must understand fully what research needs to be done and how the technology might be designed and used. This book provides a clear and accessible overview of what the costs and risks might be, and how climate engineering might fit into a larger program for managing climate change.
Earth science in your everyday life
How does the temperature of ocean water make a difference in the strength of tropical storms? This question and many others can be answered with the principles of earth science. Supporting the Next Generation Science Standards, this book discusses everyday events to describe earth science principles in action.
Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat
The Greenland Ice Sheet is losing mass at accelerated rates in the 21st century, making it the largest single contributor to rising sea levels. Faster flow of outlet glaciers has substantially contributed to this loss, with the cause of speedup, and potential for future change, uncertain. Here we combine more than three decades of remotely sensed observational products of outlet glacier velocity, elevation, and front position changes over the full ice sheet. We compare decadal variability in discharge and calving front position and find that increased glacier discharge was due almost entirely to the retreat of glacier fronts, rather than inland ice sheet processes, with a remarkably consistent speedup of 4–5% per km of retreat across the ice sheet. We show that widespread retreat between 2000 and 2005 resulted in a step-increase in discharge and a switch to a new dynamic state of sustained mass loss that would persist even under a decline in surface melt. Glacier retreat is the main process behind Greenland Ice Sheet dynamic mass loss over the past three decades, according to an analysis of discharge variability and calving front positions.
How to make a planet : a step-by-step guide to building the Earth
Offering a new spin on astronomy and earth sciences books for kids, this out-of-this-world how-to details the making of a planet, namely the incredible, life-sustaining, one-in-a-billion planet Earth, starting with its basic ingredients, protons and neutrons, and making abstract concepts easier to understand.
Impact of population density on Covid-19 infected and mortality rate in India
The Covid-19 is a highly contagious disease which becomes a serious global health concern. The residents living in areas with high population density, such as big or metropolitan cities, have a higher probability to come into close contact with others and consequently any contagious disease is expected to spread rapidly in dense areas. However, recently, after analyzing Covid-19 cases in the USA researchers at the Johns Hopkins Bloomberg School of Public Health, London school of economics, and IZA—Institute of Labour Economics conclude that the spread of Covid-19 is not linked with population density. Here, we investigate the influence of population density on Covid-19 spread and related mortality in the context of India. After a detailed correlation and regression analysis of infection and mortality rates due to Covid-19 at the district level, we find moderate association between Covid-19 spread and population density.
Earth's cycles
\"This fascinating book explains the patterns and cycles created on Earth by the influence of the Sun and the Moon, as well as by the Earth's magnetic poles and the planet's rotation on an axis. Informative text, vivid photographs, and detailed diagrams help explain patterns such as day and night, the four seasons, the lunar cycle, the rise and fall of tides, and weather cycles\"-- Provided by publisher.
The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data
The FLUXNET2015 dataset provides ecosystem-scale data on CO , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.